Adenosine-dependent induction of glutathione peroxidase 1 in human primary endothelial cells and protection against oxidative stress.

نویسندگان

  • Yufeng Zhang
  • Diane E Handy
  • Joseph Loscalzo
چکیده

Cellular glutathione peroxidase (GPx-1), a selenocysteine-containing enzyme, plays a central role in protecting cells from oxidative injury. GPx-1 is ubiquitously expressed in eukaryotic cells where it reduces hydrogen and lipid peroxides to alcohols. Adenosine, which is released from stressed or injured cells, protects against ischemia/reperfusion injury and apoptosis. In this study, we hypothesize that the cytoprotective effect of adenosine involves an increase in the activity of GPx-1. Treatment of human primary pulmonary artery endothelial cells (HPAECs) with 50 micromol/L adenosine in the presence of 10 micromol/L erytho-9-(2-hydroxy-3-nonyl)adenine (EHNA), an adenosine deaminase inhibitor, for 48 hours increased GPx-1 mRNA levels 2-fold. GPx-1 protein and enzyme activity also increased approximately 2-fold after treatment. The induction of GPx-1 expression was found to be a consequence of increased mRNA stability and not an increase in transcription. Bisindolylmaleimide I (BIM), a protein kinase C signaling pathway inhibitor, significantly attenuated the induction of GPx-1 mRNA by approximately 36%. The adenosine/EHNA-treated cells were more resistant to hydrogen peroxide stress. Both pharmacological inhibition and siRNA knockdown of GPx-1 attenuated the protective affect of adenosine/EHNA treatment, indicating that the adenosine-induced increase in GPx-1 contributes to an increase in cellular protection against oxidative stress. These data suggest that adenosine may protect the cardiovascular system from ischemia/reperfusion injury, in part, by enhancing the expression of the central intracellular antioxidant enzyme, GPx-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Selenite protects human endothelial cells from oxidative damage and induces thioredoxin reductase.

The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 microM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant...

متن کامل

The ginsenoside protopanaxatriol protects endothelial cells from hydrogen peroxide-induced cell injury and cell death by modulating intracellular redox status.

Ginsenosides, the active components of the famous Chinese herb ginseng, have been suggested to possess cardiovascular-protective effects. The mechanism of ginsenosides is believed to be associated with their ability to prevent cellular oxidative stress. The purpose of this study was to explore the cytoprotective effects of the ginsenoside protopanaxatriol (PPT) on hydrogen peroxide (H(2)O(2))-i...

متن کامل

The protective effects of resveratrol on human coronary artery endothelial cell damage induced by hydrogen peroxide in vitro.

Oxidative stress is defined as imbalance between the production and destruction of reactive oxygen species. The aim of this study was to investigate whether resveratrol could protect human endothelial cells against hydrogen peroxide damage in vitro. In this in vitro study on human coronary endothelial cells, the effects of resveratrol on the glutathione content in human coronary endothelial cel...

متن کامل

Hydrogen Sulfide Protects HUVECs against Hydrogen Peroxide Induced Mitochondrial Dysfunction and Oxidative Stress

BACKGROUND Hydrogen sulfide (H₂S) has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 96 8  شماره 

صفحات  -

تاریخ انتشار 2005